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Abstract. A perturbative description of photodetection without the rotating wave approxima-
tion is presented. With the help of Green function techniques on an extended time contour
renormalized expressions for the single- and multitime counting probabilities are derived, which
explicitly reflect the causal propagation of signals. In the case of classical light fields the
moments of the counting statistics can be expressed in terms of field correlation functions in
agreement with the result of Bykov and Tatarskii. For non-classical radiation fields such as
squeezed states the Bykov–Tatarskii formula is shown to be incorrect.

1. Introduction

The quantum theory of photodetection is one of the fundamental concepts in quantum
optics and has extensively been studied in the early years of the field [1–5]. The two
main approximations of the standard approaches by Mandel and Glauber [1, 2] are the
perturbative treatment of the detector–field interaction and the rotating-wave approximation
(RWA). An extension to efficient photodetection, where the back-action of the detector on
the field cannot be neglected and a non-perturbative approach is required has been done for
a single-mode field in [4–8] and for a multimode field in [9–11]. The aim of this paper is
to develop an approach without the use of the RWA.

In RWA, the termsd+E+ andd−E− (where the superscript denotes positive or negative
frequency parts) in the detector-field interaction Hamiltonian [12]

HDF = −
∑
j

dj (t) ·E(rj , t) (1)

are neglected. Heredj is the dipole operator of thej th detector atom andE is the operator
of the transverse electric field†. This approximation is valid as long as the measurement
time and the pulse length of the detected field are long compared to a typical optical cycle. It
breaks down, however, when ultrashort light pulses are considered. Furthermore, as pointed
out by Bykov and Tatarskii [13], the expression for the detection probability obtained with
the RWA is unsatisfactory from a fundamental point of view, since it leads to (small)
violations of causality.

In an approach without the RWA some problems arise, which prevent a straightforward
generalization of the standard treatment. The correct choice of the initial state and the

† In fact the transverse electric field should be replaced by the electric displacement operatorD/ε0 [12]. This
distinction is, however, of no relevance here.
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projection operator onto an ‘excited’ state of the detector become crucial. In contrast to
the case with RWA the initial state cannot be the free ground state, since the excitation
probability from this state is not zero, even if the field is initially in the vacuum state

d

dt
wext ∼ |d|2〈0|E(t)E(t)|0〉 ∼

∫
d3k k→∞. (2)

One rather has to take into account the fact that the interaction with the vacuum field is
present at any time and hence the initial state has to be a stationary state of the detector-field
interaction. A similar problem arises with the projection operator. A projection onto a bare
excited state of a detector atom does not correspond to an actual detection of a photon,
since this state has a finite overlap with the interacting ground state.

An interesting way to overcome these problems has been introduced by Drummond
[14]. In this approach a Hamiltonian is introduced by means of an appropriate canonical
transformation, which is a combination of thep · A and d · E interactions and has no
rotating terms for the interaction of the field with a harmonic oscillator of given frequency.
However, since the canonical transformation of the field explicitly contains the frequency of
the detector oscillator, it is not clear whether this approach can be generalized to broad-band
detectors with short response times.

Recently Milonniet al [15] have shown, that by applying the RWA to the formal solution
of the source-field interaction problem as opposed to the interaction Hamiltonian, causality
can be regained. In this approach the field operatorE is replaced by

E±(t) = E±free(t)−
i

h̄

∫ ∞
−∞

dτ
∑
j

Dret(0, t; rj , τ )s±j (τ ) (3)

whereEfree is the free-field part,sj is the source-dipole operator andDret is the retarded
Green function of the electric field. This approach does not, however, remove the
problem of vacuum contributions when higher moments are considered. For example,
in 〈E−(t1)E−(t2)E+(t2)E+(t1)〉, whereE± are the frequency parts as defined in (3), the
free-field parts ofE±(t2) do not vanish as they in general do not commute with the source
parts ofE±(t1).

The problem of renormalization, i.e. the removal of vacuum divergences will be solved
in this paper by using Green function techniques [16] on an extended time contour. The
initial state of the detector system and the projection operator will be related to the known
eigenstates of the non-interacting systems at timest = ±∞. Since the interaction of the
detector with the radiation field is always present, the finite detection time is modelled
by modifying the field propagator that describes the signal propagation from the radiation
sources rather than switching the detector–field interaction on and off. In the lowest order
of perturbation the probability of exciting a set of detector atoms is expressed as a matrix
element of the time-evolution operator on a modified Schwinger–Keldysh time contour [17].

It is shown that the moments of the single- and multitime photon counting distributions
are given by retarded (i.e. causal) correlations of source dipoles. If the radiation sources are
classical (deterministic or stochastic) these moments can be expressed in terms of electric
field operators. In this case the detection formula suggested by Bykov and Tatarskii [13] is
recovered. It is shown, however, that for non-classical radiation fields the Bykov–Tatarskii
formula may lead to unphysical results such as negative probabilities.

This paper is organized as follows. In section 2 we describe the detector model and
derive an expression for the excitation probability of a given set of detector atoms when
exposed to the source field at all times. In section 3 we introduce an extended time-contour
which removes the vacuum divergences and renormalizes the approach. In section 4 we
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derive the probability distribution ofm counts within a time interval(t, t + 1t) and in
section 5 the joint probability distributions of countingm1, . . . , mn photons in the non-
overlapping time intervals(t1, t1 + 1t), . . . , (tn, tn + 1t). In section 6 it is shown that
the counting probability can be expressed in terms of input field operators if the radiation
sources are classical. In this case the result of Bykov and Tatarskii is recovered [13]. Finally
the difference between RWA and non-RWA formulae is illustrated for the simple example
of an ultrashort Gaussian pulse. Section 7 summarizes the results.

2. Detector model

The point-like photodetector is assumed to be a collection of many-level atoms located at
the origin with a single ground state|g〉l and a broad band of excited states|ei〉l . The index
i specifies the level andl the atom. The dipole operator of the detector atom is denoted
by dl . We assume that the probability of excitation of a detector atom is small, such that
a perturbative treatment is justified. Note that even though we are not interested in this
aspect here, this assumption does not exclude efficient photodetection. In such a case the
propagation of the field inside the detector and its depletion due to absorption have to be
taken into account [11, 18]. In this paper we also take into account explicitly radiation
sources. The source dipoles located at positionrj are described by the dipole operatorssj .
The source-field and detector-field interaction operators are given in dipole approximation
by

HSF = −
∑
j

sj (t) ·E(rj , t) (4)

HDF = −
∑
l

dl(t) ·E(0, t). (5)

As mentioned before, the finite detection time cannot be described by switching on and
off the detector-field interaction (5). We will rather assume that the propagation of photons
from the source to the detector will be blocked by a shutter before and after the time interval
of detection. In [19] it was shown that the action of such a shutter can be described by its
influence on the retarded field propagators.

Dret
µν(0, t; rl , t ′)→ 2(t − t1)2(t2− t)Dret

µν(0, t; rl , t ′) (6)

Dret
µν(0, t; 0, t ′)→ Dret

µν(0, t; 0, t ′) (7)

where(t1, t2) is the detection time interval and2 denotes the Heaviside step function. In
all the following discussions the presence of the shutter is ignored and will be taken into
account only at the end by making the replacement (6).

To find the appropriate initial state, we assume that all interactions are adiabatically
switched on and off fort →±∞. Hence we may assume that the state vector fort →−∞
is given by a product of the bare ground state of the detector atoms|g〉l , the field vacuum
|{0}〉 and some state of the sources|ψs〉

|ψ(t = −∞)〉 = |φ0〉 =
∏
l

|gl〉|{0}〉|ψs〉. (8)

It may be noted, that this choice will finally give rise to the retarded as opposed to advanced
propagation of signals. In lowest order of the detector-field coupling a detector atom can
only absorb a photon from the field. A subsequent spontaneous emission is a higher-order
process and is not accounted for in the perturbative approach. Therefore the excitation
of the detector can be probed by a projection onto the bare excited states ast → +∞
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where again all interactions are assumed to be switched off adiabatically. In reality the
detector atom is coupled to some reservoir (e.g. electric field ionization) which prevents the
re-emission of photons [10]. Its description would, however, unneccesarily complicate the
present discussion.

In order to obtain the probability distribution for the detection of photons we first derive
the coincidence probability of finding a specific set ofn atoms labelled byl1, . . . , ln excited.
In the interaction picture, this probability can be written as

p
(n)
l1,...,ln

= 〈φ0|S−1(∞,−∞)P̂l1,...,lnS(∞,−∞)|φ0〉 (9)

where the projection operator̂Pl1,...,ln is given by

P̂l1,...,ln =
ln∏
l=l1

∑
i

|ei〉ll〈ei |. (10)

S(∞,−∞) = T exp

{
− i

h̄

∫ ∞
−∞

dτ (HDF(τ )+HSF(τ ))

}
(11)

is the time-evolution operator andT denotes time ordering. Note, that̂Pl1,...,ln acts as a
unity operator with respect to all other atoms. Thus, other atoms may also be excited.

ExpandingS in equation (9) into a power series and applying the Wick theorem [16]
we find in lowest order of the detector-field coupling for the single-atom probability

p
(1)
l =

1

h̄2

∫ ∫ ∞
−∞

dt dt ′
∑
i

〈g|dα(t)|ei〉ll〈ei |dβ(t ′)|g〉
{
D−+αβ (0, t; 0, t ′)

+ 1

h̄2

∫ ∫ ∞
−∞

dτ dτ ′
∑
jk

[D−−αµ (0, t; rj , τ )D++βν (0, t; rk, τ ′)〈sjµ(τ )skν (τ ′)〉H

−D−+αµ (0, t; rj , τ )D++βν (0, t; rk, τ ′)〈T [sjµ(τ )s
k
ν (τ
′)]〉H

−D−−αµ (0, t; rj , τ )D+−βν (0, t; rk, τ ′)〈T −1[sjµ(τ )s
k
ν (τ
′)]〉H

+D−+αµ (0, t; rj , τ )D+−βν (0, t; rk, τ ′)〈skν (τ ′)sjµ(τ )〉H ]

}
(12)

whereα, β, µ, ν are vector indices and

D++µν (1; 2) = 〈0|T [Eµ(1)Eν(2)]|0〉 (13)

D−+µν (1; 2) = 〈0|Eµ(1)Eν(2)|0〉 (14)

D+−µν (1; 2) = 〈0|Eν(2)Eµ(1)|0〉 (15)

D−−µν (1; 2) = 〈0|T −1[Eµ(1)Eν(2)]|0〉 (16)

are the Green functions of the free electric field [16]. The index ‘H ’ in equation (12)
denotes correlation functions of source operators in the Heisenberg picture, i.e. including
the interaction with the radiation field. In a similar way the many-atom probabilities can
be derived.

We recognize two things from equation (12). First there is a contribution that does not
depend on the radiation sources. This (divergent) term is a pure vacuum contribution.
Secondly, the contribution from the radiation sources are not retarded since only the
combinations

Dret
µν(1, 2) = D++µν (1, 2)−D+−µν (1, 2)

= D−+µν (1, 2)−D−−µν (1, 2) (17)
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give retarded Green functions. In the next section it is shown, that a formal manipulation
of the initial expression (9) removes the vacuum terms and leads to purely retarded
contributions from the sources.

3. Green functions on an extended time-contour: Renormalization and causality

The perturbative expansion of the time-evolution operator in powers of the detector-field
coupling did lead to divergent vacuum contributions. The origin of these terms is obviously
the perturbation expansion itself. The interaction with the vacuum field cannot be treated
perturbatively, only the coupling to the source part of the field can. In this section we
introduce a modified perturbation expansion which eliminates the vacuum contributions and
also leads to purely retarded source contributions.

According to the Gell-Mann–Low theorem [20], the non-interacting ground state of the
detector-field system fort → −∞ goes over into itself ast → +∞ apart from a phase
factor, if the interaction is adiabatically switched off in the limit|t | → ∞. Hence we have

S1(∞,−∞)|φ0〉 = eiφ|φ0〉 (18)

where

S1(∞,−∞) = T exp

{
− i

h̄

∫ ∞
−∞

dτ HDF(τ )

}
. (19)

Thus we may replace|φ0〉 in equation (9) by|φ̃0〉 = S−1
1 (∞,−∞)|φ0〉. Physically |φ̃0〉

corresponds to an initial state of the detector-field subsystem which evolves into the non-
interacting ground state ast →+∞ if no radiation sources are present. It is clear at hand,
that there are no vacuum contributions in any order of perturbation in this case, since the
non-interacting ground state is orthogonal to the excited state of the detector. Using|φ̃0〉
as the initial state we may write the excitation probability as

p
(n)
l1,...,ln

= 〈φ0|S1(∞,−∞)S−1(∞,−∞)× P̂l1,...,lnS(∞,−∞)S−1
1 (∞,−∞)|φ0〉. (20)

To simplify the notation we introduce a time contourD similar to the Schwinger–
Keldysh [17] contour used in non-equilibrium quantum statistics as indicated in figure 1.
The contour has 4 branches denoted by (a)–(d). The corresponding time evolution operator
SD is identical toS or S−1 on (b) and (c) and toS−1

1 or S1 on (a) and (d) respectively.
With these definitions we find

p
(1)
l =

1

h̄2

∫
c,d

dť
∫
a,b

dť ′
∑
i

〈g|dα(t)|ei〉〈ei |dβ(t ′)|g〉
{
Dαβ(0, ť; 0, ť ′)

+ 1

h̄2

∫ ∫
b,c

dτ̌ dτ̌ ′
∑
jk

Dαµ(0, ť; rj , τ̌ )Dβν(0, ť
′; rk, τ̌ ′)〈TD[sjµ(τ̌ )s

k
ν (τ̌
′)]〉H

}
(21)

where ť and τ̌ denote times on the contour,TD is the time-ordering operator onD. For
simplicity we here discuss explicitly only the single-atom probability. The generalization
to the many-atom case is straightforward but somewhat involved. We will come back to
the general case at a later point.

Let us first discuss the vacuum term in (21). Rewriting the contour integrals into ordinary
time integrals, one realizes that the contributions from the different branches compensate
each other
1

h̄2

∫
c,d

dť
∫
a,b

dť ′
∑
j

〈g|dα(t)|ej 〉〈ej |dβ(t ′)|g〉Dαβ(0, ť; 0, ť ′)
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Figure 1. Extended time contourD. Time ordering onD is indicated by arrows. The time
evolution onD contains on branches (a) and (d) only the detector–field interaction. In (b) and
(c) it contains the detector–field and source–field coupling.

= 1

h̄2

∫ ∫ ∞
−∞

dt dt ′
∑
j

〈g|dα(t)|ej 〉〈ej |dβ(t ′)|g〉

×[〈0|Eµ(t)Eν(t ′)|0〉 − 〈0|Eµ(t)Eν(t ′)|0〉
−〈0|Eµ(t)Eν(t ′)|0〉 + 〈0|Eµ(t)Eν(t ′)|0〉] = 0. (22)

We now discuss the source-field term in equation (21). We first note that the integral
contains two equal terms of opposite sign which cancel each other ifτ̌ ∈ (c) or τ̌ ′ ∈ (b).
This means we can restrict the integration toτ̌ ∈ (b) and τ̌ ′ ∈ (c). If we again rewrite the
contour integrals in terms of ordinary time integrals, we find the following non-vanishing
contributions:

p
(1)
l =

∫ ∫ ∞
−∞

dt dt ′
∫ ∫ ∞
−∞

dτ dτ ′ f lαβ(t, t
′)

1

h̄2

∑
jk

[D−−αµ (0, t; rj , τ )−D−+αµ (0, t; rj , τ )]

×[D++αµ (0, t
′; rk, τ ′)−D−+αµ (0, t ′; rk, τ ′)]〈sjµ(τ )skν (τ ′)〉H (23)

where we have introduced the detector response function

f lαβ(t, t
′) = 1

h̄2

∑
i

〈g|dα(t)|ei〉ll〈ei |dβ(t ′)|g〉. (24)

For the case of identical detector atoms the indexl may be dropped. If the spectrum of
excited states is dense one can replacefαβ(t, t

′) within the RWA bygαβδ(t − t ′). However,
when the rotating terms become relevant, such a replacement is not possible, since the
summation in equation (24) extends only over positive frequenciesωi = (Eei − Eg)/h̄.

According to equations (17) the expressions in the brackets in equation (23) are the
retarded Green functions of the electric field. We thus conclude from equation (23), that
the excitation probability of a detector atom does not contain any vacuum contributions and
is related to source expressions via retarded (i.e. rigorously causal) Green functions.

4. Single-time counting probability

In order to calculate the single-time counting probability distribution, we assume that all
detector atoms interact with the source field during the same time interval(t, t + 1t).
Physically this can be realized by means of a shutter in front of the detector. Taking into
account the action of this shutter we eventually arrive at

p
(1)
l (t,1t) = −

1

h̄2

∫ ∫ t+1t

t

dt ′ dt ′′f lαβ(t
′, t ′′)

∫ ∫ ∞
−∞

dτ ′ dτ ′′

×
∑
jk

Dret
αµ(0, t

′; rj , τ ′)Dret
βν(0, t

′′; rk, τ ′′)〈sjµ(τ ′)skν (τ ′′)〉H (25)
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where1t is the detection time interval. Note thatDret contains a factori, such that the
whole expression (25) is positive.

Similarly one finds for the probability of exciting atomsl1, . . . , ln

p
(n)
l1,...,ln

(t,1t) =
(
− 1

h̄2

)n ∫ ∫ t+1t

t

dt ′1 dt ′′1

∫ ∫ ∞
−∞

dτ ′1 dτ ′′1 . . .
∫ ∫ t+1t

t

dt ′n dt ′′n

∫ ∫ ∞
−∞

dτ ′n dτ ′′n

×f l1α1β1
(t ′1, t

′′
1 ) . . . f

ln
αnβn

(t ′n, t
′′
n )
∑
{j},{k}

Dret
α1,µ1

(0, t ′1; rj1, τ
′
1)

×Dret
β1,ν1

(0, t ′′1 ; rk1, τ
′′
1 ) . . . D

ret
αn,µn

(0, t ′n; rjn , τ ′n)Dret
βn,νn

(0, t ′′n ; rkn , τ ′′n )
×〈T −1[sj1

µ1
(τ ′1) . . . s

jn
µn
(τ ′n)]T [sk1

ν1
(τ ′′1 ) . . . s

kn
νn
(τ ′′n )]〉. (26)

or

p
(n)
l1,...,ln

(t,1t) =
〈 ln∏
l=l1

γ̂l(t,1t)

〉
T

(27)

where

γ̂l(t,1t) = − 1

h̄2

∫ ∫ t+1t

t

dt ′ dt ′′
∫ ∫ ∞
−∞

dτ ′ dτ ′′f lαβ(t
′, t ′′)

×
∑
j,k

Dret
αµ(0, t

′; rj , τ ′)Dret
βν(0, t

′′; rk, τ ′′)sjµ(τ ′)skν (τ ′′) (28)

andT stands for apex time-ordering of the source dipole operators as in equation (26).
Following [2] we can then derive the exclusive probability of exciting exactlym

atoms and therefore the single-time probability distribution of photocounts from (26)
using the Bernoulli scheme. Assuming a large number of detector atoms, such that
N !/(N −m)!m! ≈ Nm/m!, we eventually arrive at the generalized Poisson distribution

Pm(t,1t) = 1

m!
〈0̂(t,1t)me−0̂(t,1t)〉T (29)

where0̂ = Nγ̂ . The fact that0̂ scales linearly with the number of atomsN is an artefact
of the approach which neglects the depletion of the field due to the detection process.
When this effect is taken into account,N is to be replaced by(1− e−ηN) [11], whereη
characterizes the absorption of the field inside the detector. The factorial moments of the
photon counting statistics read explicitly

〈m(m− 1) . . . (m− n+ 1)〉 = 〈0̂n〉T . (30)

It should be noted that even though there is no normal ordering involved in the generalized
Poisson distribution without RWA, the moments are stilltime orderedwith respect to the
source-dipole operators.

The generalized Poisson distribution, equations (29), is the first main result of this paper.
It has been obtained without applying the RWA. The result is very similar to the Glauber–
Mandel distribution, except that here no normal ordering is involved. There are no vacuum
contributions (as it should be) and the source terms are retarded which shows explicitly the
causal propagation of signals from the source to the detector.

5. Joint probability for detection in non-overlapping time intervals

In order to obtain information about correlations of the measured field for different times
the joint probability Pm1,...,mk (t1, . . . , tk;1t) to detectm1, . . . , mk photons in the non-
overlapping time intervals(t1, t1 +1t), . . . , (tk, tk +1t) is needed besides the single-time
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counting distribution given in equation (29). With the help ofPm1,...,mk properties such as
bunching or antibunching of photocounts or the waiting-time statistics important for the
interpretation of quantum jumps [21] can be discussed. To derive an expression for the
joint probability in the framework of our discussion we have to extend the model of a
single detector to a collection of detectors and a beam switch. The beam switch is used
to direct the source field to different detectors in the non-overlapping time intervals. For
the sake of simplicity we will restrict the discussion to the two-time joint probability. The
generalization is then straightforward.

To calculate the joint probability of exciting atomsl1, . . . , ln of detector 1and atoms
k1, . . . , km of detector 2, we introduce the projection operator onto the excited states of the
corresponding detector atoms

P̂l1,...,ln;k1....km =
ln∏
l=l1

∑
i

|ei〉ll〈ei | ⊗
km∏
k=k1

∑
i

|ei〉kk〈ei |. (31)

With this we may write the joint excitation probability similar to equation (20)

p
(n,m)

l1,...,ln;k1,...,km
= 〈φ0|S1(∞,−∞)S−1(∞,−∞)P̂l1,...,ln;k1,...,kmS(∞,−∞)S−1

1 (∞,−∞)|φ0〉.
(32)

We now proceed along the same lines as in sections 2–4. The vacuum contributions again
cancel by construction and only retarded source correlations remain. Taking into account
the different opening times (or equivalently delay times) for the shutters in front of the two
detectors, we eventually arrive at

p(n,m)(t1, t2,1t) = 〈0̂(t1,1t)n0̂(t2,1t)m〉 (33)

where 0̂ is given in equation (28). Using again the Bernoulli scheme, we find the joint
probability of exciting exactlyn atoms of detector 1 in the time interval(t1, t1 +1t) and
m atoms of detector 2 in the time interval(t2, t2+1t):
Pn,m(t1, t2;1t) = 1

n!m!
〈(0̂(t1,1t))n(0̂(t2,1t))m exp{−(0̂(t1,1t)+ 0̂(t2,1t))}〉T . (34)

6. Relation to input fields

In section 4 we derived an expression for the probability distribution of photodetection
without RWA in terms of source correlation functions. We will now discuss under what
conditions an expression in terms of field operators can be obtained and how it differs from
the Glauber–Mandel expression.

In [13] Bykov and Tatarskii suggested that the Glauber–Mandel expression for0̂

0̂GM = gαβN
∫ t+1t

t

dt ′ E−α (t
′)E+β (t

′) (35)

in the (normal and time-ordered) Poisson distribution

Pm = 1

m!
〈: 0̂me−0̂ :〉T (36)

should be replaced by

0̂BT = gαβN
∫ t+1t

t

dt ′ Eα(t ′)Eβ(t ′) (37)

in order to obtain causal expressions. Here,E± are the positive and negative frequency
parts of the electric field operator. This suggestion gives the detection probabilities in terms
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of the input field. It does, however, have an obvious problem in that the normal ordering
destroys the positivity of the distribution if̂0BT is used. Hence, there can be cases where
negative probabilities occur†, which means that the Bykov–Tatarskii equation is generally
incorrect. For example the mean number of photons detected from a squeezed vacuum
field (where〈E〉 = 0) can be negative for very short detection times (on the order of the
oscillation period). According to equations (36) and (37)

〈m〉 ∼ 〈: E2 :〉 = 〈: 1E2 :〉 < 0. (38)

The problem of negativity does not exist, if classical light fields are considered, for which
the normal ordering has no effect. We will now show, that in this case the result obtained
in section 4 coincides with the Bykov–Tatarskii expression.

As shown in [22, 19] any normal and time-ordered correlation function of the electric
field in the Heisenberg picture can be expressed by time-ordered source correlation functions.
For example

〈: Eα(1)Eβ(2) :〉H = 1

h̄2

∫ ∞
−∞

d1′
∫ ∞
−∞

d2′2(1− 1′)2(2− 2′)

×{〈0|E+µ (1′)E−α (1)|0〉〈0|E+β (2)E−ν (2′)|0〉〈sµ(1′)sν(2′)〉H
−〈0|E+µ (1′)E−α (1)|0〉〈0|E+ν (2′)E−β (2)|0〉〈T −1[sµ(1

′)sν(2′)]〉H
+〈0|E+α (1)E−µ (1′)|0〉〈0|E+ν (2′)E−β (2)|0〉〈sν(2′)sµ(1′)〉H
−〈0|E+α (1)E−µ (1′)|0〉〈0|E+β (2)E−ν (2′)|0〉〈T [sµ(1

′)sν(2′)]〉H }. (39)

Here 1, 1′, 2, 2′ are used as abbreviations for time and space coordinates, and ‘:· · · :’
denotes normal and time ordering. This expression does not coincide with the result from
section 4. If, however, the source dipole operators commute, i.e. if

[sµ(1
′), sν(2′)] = 0 (40)

the field correlation functions in (39) can be summed to give retarded Green functions, since

2(1− 1′)[〈0|E+(1)E−(1′)|0〉 − 〈0|E+(1′)E−(1)|0〉] = 2(1− 1′)〈0|[E(1), E(1′)]|0〉
= Dret(1, 1′). (41)

The source-dipole operators commute in general only if the radiation source and therefore
the generated field are classical. This also includes the case of classical stochastic fields
such as thermal radiation but not non-classical radiation states. Hence, the result of section 4
can be expressed in terms of field operators and coincides with the Bykov–Tatarskii formula
(37) in the case of classical light fields not, however, for non-classical light such as squeezed
states.

The rotating terms in the detector-field interaction become important when either the
pulse length of the field or the detection time become of the order of the oscillation period.
With the advance of techniques for ultrashort-pulse generation the first situation is now
experimentally accessible in the optical regime. The second case is, however, only of
interest for low-frequency radiation. To illustrate the difference of the RWA and non-RWA
predictions let us now discuss the detection of an ultrashort pulse with Gaussian-shaped
coherent amplitude

E(t) = E0 exp

{
−ω

2t2

2σ 2

}
cos[ωt ]. (42)

† The author thanks Mrs Silke Biermann for pointing out this shortage of the Bykov–Tatarskii formula.
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In RWA the mean number of photocounts in a detection time long compared with the pulse
length is given by

IRWA =
∑
i

N
|dgi |2
h̄2

∫ ∫ ∞
−∞

dt dt ′ e−iωi(t−t ′)〈E−(t)E+(t ′)〉 (43)

while without RWA one has for the coherent (i.e. classical) field

I =
∑
i

N
|dgi |2
h̄2

∫ ∫ ∞
−∞

dt dt ′ e−iωi(t−t ′)〈: E(t)E(t ′) :〉. (44)

Hereωi = (Ei−Eg)/h̄ are the (positive) transition frequencies of the detector atoms. Time
ordering is of no relevance since the coupling to radiation sources is ignored. Substituting
equation (42) one finds

I

IRWA
=
∑

i |dgi |2[e−(ω−ωi)
2σ 2/2ω2 + e−(ω+ωi)

2σ 2/2ω2
]2∑

i |dgi |2e−(ω−ωi)2σ 2/ω2 . (45)

In the case of a single excited detector state withωi = ω0, this simplifies to

I

IRWA
=
[
1+ exp

(
−2σ 2ω0

ω

)]2
. (46)

For a resonant transitionω0 = ω and σ = 1 the difference between the RWA and non-
RWA formulae is about 29%. On the other hand, for a broad-band detector we may set∑

i |dgi |2→ η
∫∞

0 dωi . Thus we find

I

IRWA
= 2

1+ e−σ
2

1+ erf(σ )
(47)

which for σ = 1 gives rize to a difference of about 48%. This example shows that for very
short pulses with pulse length of the order of the oscillation period irrespective of the actual
detector response, the RWA and non-RWA formula give substantially different results.

7. Summary

In this paper a theoretical description of photodetection without RWA is presented, which is
also valid on very short timescales and correctly describes the detection of ultrashort pulses.
With an appropriate choice of initial and final states, which takes into account the fact that
the detector–field interaction is present at all times and using Green function techniques on
an extended time contour, a renormalized and causal expression for the photon-counting
distribution has been derived. It has been shown that this distribution can be expressed in
terms of field correlation functions only in the case of classical (deterministic or stochastic)
light sources. In this case the generalization of the Glauber detection formula suggested
by Bykov and Tatarskii is recovered. It is also shown that the Bykov–Tatarskii equation
is incorrect in the case of non-classical light. In the case of quantum light sources, the
moments of the counting distribution can be expressed in terms of time-ordered source
correlations only.

The presented approach is perturbative in that the probability of excitation of a specific
detector atom is assumed to be small. This assumption is well satisfied if the detector
operates in the regime of linear response were saturation effects are negligible. The
perturbative approach, however, also neglects the depletion of the field due to field
absorption and therefore yields incorrect expressions for the detector efficiency. In order to
describe efficient photodetection the depletion of the field needs to be taken into account.
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